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A New Scattering Theory Related Bessel Function Result
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ABSTRACT. Some scattering-theory related Bessel  function  results  are
reviewed, and a new expression involving the squares of Bessel fanctions is then
obtained. The new expression is
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1. Review

Consider a potential Vi(r) where the potential may depend on the angular momentum {, but
not the momentum, and where the potential is sufficiently weak. In this case one can usc
the partial-wave Born approximation namely:
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where E = k*5°/(2M), and M is the mass of the scattered particle, and &,(k) the resulting
phase shift.

If one knows Vi(r), one can, with the help of eq. (1), find the corresponding phase
shifts 9,(k), which arc &, or equivalently £ dependent. and hence the differential and total
scross sections. For example, one has the standard formula:

i’fi(zf +1)sin*8, (k). (2)
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Let us now turn our attention to the mverse problem, in this approximation. In other
words, suppose we know ,(k), can we uniquely determine the potentiat V{r)? For an exact
solution of this inverse prohlem one must, as is known, solve the Gel fand-Levitan
Marchenko equaiion"z.

Looking carefully at eq. (1) one realizes that if one finds the inverse function gy(ks"),
of jikr)jikr) = ji'(kr) where

[ i, terydk =8 —r. (3)
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one can formally obtain Vi(r) and hence any imtegral of Vi(r) 1n the partial-wave Born
approximation.

This is accomplished by pre-multiplying eq. (1) by (gu{kr’)}/k, integrating over dk and
interchanging the 4 and r integrations. Thus
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Hence:
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tand, (k) g, (kr) f(r) R
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where f{r) is a well-behaved funetion of r.

One has thus obtained the potential Vi(r) and arbitrary matrix elements of this
potential in the partiul-wave Born approximation, assuming the corresponding phase shifts
are known. The crucial eqnations in this context being eqs. (3) and (4}

I investigated this possibility3, and concluded that the required inverse function of
Jithr) was
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By similar techniques 1 also obtained the “inverse” functions g (kry for
JEkRfra(kry, and ggoolkr") for jlkr)jo(kr), the latter being useful if one has ensor forces:
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A year later Sollfrey’ oblained the following cquivalent formula for g;{) by using Mellin
transforms:
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More recently two new expressions ™ were oblained for eulpn), namely:
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In Table | a few typical g;°s and j's are listed. The Appendix lists other useful
mathematical properties of the gg's.

Table (1). A few typical g,"s and jim)'s
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Examining this formalism more carefully one realizes that eq. (3) is almost, though
not quite, correct. The exact result is:

[ 7 Chrygy thrtyedk = TS0 — Py 8r Py — (1) 2607} (11)
} r-

where the gn(p) are defined in eqs (6) - (10). This means that in the Born approximation

g, (kr') tan 8,(k) M - , )
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MV(r)r -y M J° V,(rydr r 8(r"),
since r, r' >0, i.e. rather than eq. (4), one has:
3 b - ¢, (kr)tan &,(k) , - } .
‘/{(r)__ZMr: .[- H k dk +(—l) 2[[ V:,(f‘)dr é(r). (12)

The additional term (—l)f?_’{ J: V.(r)dr }§(r) does not affect eq. (5), provided f(r)
vanishes at # = 0. This is the case for instance if f{r) = r cXxXp (—rz/Zbg).

An alternative approach to this problem that .wmds the above complications at r = 0,
involves using the subsequently derived cxpn,sslon

o™ (p)) =sin 2p). (13)
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e ) (0] [ (1 a)
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Pre-multiplying both sides of eq. (1) by #**” and then operaling on the resulting expression
with the operator O(k) of eq. (13), (where if onc writes p = kr. Ok} = r“"'O({J) ), one

obtains:
. } i .
d Y df d a J h™ tano (k) - -
Sl s [ A o = | sIn(2kr V()T 14
[(H{_] (H\(JL'J[ 1 M 2 }} JT s r) ,l(f) ur ( )

which is just the Fourier-sine transform’ of ( 172)V.(n 2

where

Multiplying both sides of eq. (14) by (4/m) sin(2kr’y and intcgrating over & one then

obtains
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For the cases £ =0, L, one thus has:
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and so on lor larger £

Starting from eq. (15) ouc also obtains, for arbitrary fi#):

Jj Vi) f{rdr =
N ; ! A A
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IL. New Results

The spherical Bessel function ji(x) can be expressed as an inlinite sum as follows:
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From Appendix B of reference 5, we observe

o e (<D 2R U s
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However, the rhs of this cxpression may be put in a more suggestive form:
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Comparing eqs (19) and (21) we thus obtain the simple new result:
i
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If one applies the standard results
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on ¢q. (21), one obtainy additionally:
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For the special case m = £, these reduce to:
! f
1 d d | d .
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and
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One notes Lhat eq. (27) is cquivalenl to eq. (13). Thus, eq. (13} is mercly a special
casc of the more general ¢q. (25), when s =/, which in turn stems from the new resull of
this paper, namely, cq. (22).

Analogously with eq. (22), for the spherical Neumann funclions one has;
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{
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Combining cgs (22) and (29) one has the interesting differential equation:
!

d| d . > . >

el ; [(pf 1.,’;()0)) +(pf ]n;(p)) ]: 0. (30)

dp\ dp

With the help of eq. (22) one may readily invert expression (1). Thus:
mod(d L . o
—‘_4Mkmd~k[dkzj [ tan é;(*‘)]=f r Vi (r) g )2kr)dr, (31)

and using the Hankel Transtorm® result,

2 ) o
. .r (o) Jlxy) jlayyde = 6( v - 3), (32)
fr ]
one has
—4n° Uld( d Y, o . .
rViry= e J: = {E[dkz] [k’f ' tan é;(k)]}_;,(ﬂ'r)dk. (33)
Thus, forf=1,
4~ | d{ d R } .
rVi(ry= g {FA—(—({T—) [Jc1 tan o, (k)]}]l (2kr)dk. (34)

Onc noles that only two differentiations of the phase shift are required here, as
opposed to three in eq. (17) which Is an improvement in Lhe case the phase shifts arc
determined experimentally and every differentiation lcads (o more errors.

II1. Conclusion

A new result. namely eq. (22} that relmes spherical Bessel functions squared Jidp) 1o
spherical Bessel [unctions of twice the argumeunt j{2p), 1s obtained, with an analogous
expression for the spherical Neumann functions, namely eq. (29).
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Appendix

Starting from eq. (6) one eau obtain an integral cxpression for g;{p), expressing il as
a particular weighted integral over the Neumann function:
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One can easily see from eqgs (8), (9), or (10) that for large p
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while for small p one sees {rom Eq. (8) or (A.1) that
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From eq. {8) one has
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IFor the caseif(r) = eq. (18) reduces Lo
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